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Abstract

Graphics Processing Units (GPUs) are extensively used for applica-
tions such as machine learning, scientific computing, and graphics
rendering. To protect sensitive data processed by GPUs, Trusted Ex-
ecution Environments (TEEs) for GPUs have been proposed. GPU
TEEs, built with hardware-based isolation primitives, can defend
against high-privilege attackers like OS kernels. However, in this pa-
per, we present Mole, a novel attack that compromises the security
of GPU TEEs on Arm Mali GPUs by exploiting the GPU-embedded
Microcontroller Unit (MCU). By injecting a malicious firmware into
the MCU, an attacker can bypass GPU TEEs’ security guarantees.
We evaluated Mole with state-of-the-art GPU TEE proposals under
multiple real-world attack scenarios such as in-GPU AES encryp-
tion and object detection tasks. Our evaluation shows that Mole
can successfully extract sensitive data or manipulate the compu-
tation results of GPU TEEs. We responsibly disclosed our findings
to the authors of the affected GPU TEE proposals and received ac-
knowledgments from all of them. Moreover, our findings prompted
Arm to enhance the security of its GPU firmware supply-chains.
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1 Introduction

Over the past decade, Graphics Processing Units (GPUs) have
evolved significantly, moving beyond their original role in graph-
ics rendering to become critical components in high-performance
computing [12, 29, 55, 64]. Furthermore, to meet the escalating
performance demands of edge computing, GPUs are no longer con-
fined to desktops and servers but are now extensively integrated
into mobile and embedded systems, including smartphones and au-
tonomous vehicles. Despite the widespread adoption, GPU security
remains a critical concern. Numerous studies have highlighted that
the absence of robust isolation mechanisms leaves GPUs susceptible
to a variety of attacks [26, 33, 48, 54, 57, 70]. In response to these
security breaches, GPU Trusted Execution Environments (TEEs)
have been proposed. To provide an isolated environment for sen-
sitive data processing, GPU TEEs typically employ existing TEE
mechanisms, such as Intel SGX [66] and Arm TrustZone [25], or
even design their own customized trusted hardware [62, 72].

To avoid putting bloated drivers into the Trusted Codebase (TCB),
GPU TEEs often adopt a design that protects only security-critical
driver routines (referred to as shim), while leaving the remainder
of the driver stack in the untrusted domain. Many existing GPU
TEEs follow this approach, such as StrongBox [25], CAGE [63],
and MyTEE [34]. These shim-style GPU TEEs incorporate only
security-critical routines (e.g., memory allocation) into the TCB,
while delegating non-critical operations (e.g., performance monitor-
ing) to the untrusted domain. This design minimizes the TCB size
and maintains compatibility with unmodified applications, achiev-
ing a balance between security and practicality.

This work, for the first time, uncovers a novel attack scheme
that undermines the security guarantees of such shim-style GPU
TEEs on Arm. Through a comprehensive analysis of modern Arm
GPU, we discover that the Arm Mali GPU [21] incorporates an
under-documented Microcontroller Unit (MCU), which serves as
a bridge between the CPU and GPU. This MCU is responsible for
receiving GPU tasks from the CPU and dispatching them to the
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GPU’s compute unit. Furthermore, we find that the presence of the
MCU undermines the security model of the shim-style GPU TEEs.
To reduce the TCB size, shim-style GPU TEEs normally delegate the
initialization tasks to the untrusted domain, given that no sensitive
data is being processed during initialization, and the routine is no
longer executed afterward. However, the MCU is initialized by the
untrusted GPU driver and plays an important role in the execution
of GPU tasks. A malicious OS can easily leverage this security
oversight to load malicious firmware into the MCU, effectively
breaking the security guarantees of the GPU TEE.

Through a series of experiments, we reveal the internal design
of this MCU and its associated security implications, which form
the foundation of our attack. We also conduct a systematic study
of real-world devices and identify that numerous devices from
four System-on-Chips (SoC) vendors and 15 device vendors use
this MCU. The affected devices include mobile phones, Internet-
of-Thing (IoT) devices, and tablets. Furthermore, we demonstrate
the practicality of our attack in real-world scenarios, including key
extraction from an in-GPU AES implementation and result tam-
pering of a widely used object detection model (YOLOv4-tiny). All
attacks are conducted under the protection of GPU TEE, replicating
the setup of prior works [25, 34, 63]. Finally, we have reported our
findings to the authors of the affected GPU TEEs, all of whom have
confirmed the validity of our attack [11].

Our findings show the intricacy of GPU TEEs from both the
following perspectives. From a software perspective, the MCU in-
troduces significant challenges to the low TCB requirement of GPU
TEEs. The code governing the MCU is tightly integrated with the
in-kernel GPU driver, making it extremely challenging to isolate
and protect from the OS. Additionally, the lack of publicly available
design details for the MCU complicates efforts by developers to
assess its security. From a hardware perspective, shim-style GPU
TEEs underestimate the complexity of modern GPUs and focus
solely on protecting GPU tasks from the CPU and other system
devices. As a result, the MCU, as an integral component of the
GPU, is overlooked in their threat models, leaving it vulnerable to
exploitation by the OS to launch attacks on GPU TEEs. We hope
that our work can raise awareness of the MCU (as well as similar
hidden controllers) and advocate that future TEE proposals take
such components into consideration.

In summary, our contributions are as follows:

• This paper presents the first attack scheme targeting GPU TEEs
on Arm devices. By exploiting an under-documented MCU inside
the Arm GPU, we successfully compromise the security guaran-
tees of GPU TEEs.1

• Technically, we provide a comprehensive analysis of the Arm
GPU’s MCU architecture. We demonstrate that the GPU software
stack, considered untrusted by Arm GPU TEEs, can control the
GPU MCU—a trusted component that undermines isolation.

• To assess the impact of our attack, we conduct a systematic
study of the affected GPU TEE proposals and perform real-world
experiments, including key extraction and result tampering, to
validate the practicality of our attack.

1We release the codebase of Mole on our site [11].

2 Preliminary and Motivation

In this section, we describe the hardware components of a modern
Arm GPU and review Arm’s security features employed in GPU
TEE. We then present the motivation behind our proposed attack.

2.1 Arm GPU Components

We now describe the hardware components of the Arm Mali GPU,
which are critical to our discussion. As shown in Fig. 1, the Arm
Mali GPU comprises three internal components, the compute unit,
the rendering unit and an MCU. Notably, since 2021, all Arm Mali
GPUs embed an MCU to offload the scheduling of GPU tasks from
the driver. When a GPU task is submitted to the driver, the driver
sends an Interrupt Request (IRQ) to notify the MCU, which then dis-
patches the task to the compute unit or render unit as needed. This
design simplifies the kernel driver and enhances performance [21].
Despite its crucial role in GPU-CPU communication, the MCU is
under-documented, and its security implications are overlooked in
the threat model of existing GPU TEEs.

The overlooking of the MCU in the existing GPU TEEs motivates
us to investigate its security implications and whether it can be
exploited by the adversary to compromise GPU TEEs.

Kernel 
Driver

GPU
Compute

Units
Render
Units

dispatch

App.
submit

irq
MCU

Figure 1: The components of Arm GPU.

2.2 Arm Security Features

As illustrated in Fig. 2, the features employed in current GPU
TEEs include TrustZone (Sec. 2.2.1), Two-Stage Address Transla-
tion (Sec. 2.2.2), System Memory Management Unit (Sec. 2.2.3), and
Confidential Compute Architecture (Sec. 2.2.4).

CPU GPU

MMU
§2.2.2

SMMU
§2.2.3
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Memory

User App.
Secure App.

Normal World Secure World
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Figure 2: Arm security features.

2.2.1 TrustZone. Arm introduced TrustZone [20] to provide hard-
ware isolation mechanism for sensitive codebases on its devices.
Specifically, TrustZone partitions execution into two worlds: the
secure world and the normal world. The secure world provides a
hardware-based TEE for trusted OS and applications, while the
normal world hosts conventional OS and untrusted applications;
access to secure service from the normal world is restricted to
controlled mechanisms, such as privileged smc instruction. Trust-
Zone’s hardware components enforce strict isolation for sensitive
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applications within the secure world. One such component is the
TrustZone Address Space Controller (TZASC). Integrated into the
memory controller, the TZASC regulates all traffic between the
main processor and memory. Additionally, to manage traffic be-
tween peripherals and memory, the TZASC assigns a Non-Secure
Access Identity (NSAID) to each peripheral device, such as the GPU.
When a peripheral accesses content stored in the memory, the
TZASC verifies whether its NSAID has the necessary permissions.
However, while the TZASC accounts for both CPU and periph-
eral access, it cannot distinguish between accesses from different
components of the same device. For example, the TZASC cannot
differentiate between the accesses from the GPU MCU and those
from the GPU compute units.

2.2.2 Two-Stage Address Translation. Though the TZASC can reg-
ulate memory access from both the CPU and peripheral devices, it
supports only eight configurable regions—far fewer than required
by GPU TEEs. To address this limitation, GPU TEEs like Strong-
Box [25] utilize Arm’s two-stage address translation. Arm defines
two stages for address translation [19], Stage-1 and Stage-2. Stage-1
translates a virtual address (VA) to an intermediate physical ad-
dress (IPA), typically used to isolate the OS’s address space from
applications. Stage-2 further translates the IPA to a concrete physi-
cal address (PA). By leveraging two-stage address translation, GPU
TEEs like StrongBox can isolate GPU tasks from privileged adver-
saries, such as the OS kernel. For example, after a user submits a
secure GPU task to the GPU TEE, the GPU TEE can prevent the ker-
nel from accessing the GPU task by invalidating the corresponding
Stage-2 translation table entries. However, as we will demonstrate
in Sec. 4, this isolation is effective only for the CPU and not for
peripheral devices like the GPU.

2.2.3 System Memory Management Unit. On Arm devices, the pe-
ripheral devices like GPU typically share the same main memory
with the CPU. To regulate the Direct Memory Access (DMA) re-
quests from these peripherals, Arm introduced the System Memory
Management Unit (SMMU). Similar to CPU’s MMU, SMMU trans-
lates the device’s virtual address to the physical address and verifies
whether the access is permitted. By deploying and configuring the
SMMU between peripherals and the main memory controller, priv-
ileged software can prevent memory corruption attacks from these
peripheral devices. The SMMU is also used in GPU TEEs to isolate
the GPU from other potentially malicious components. However,
like the TZASC, the SMMU cannot differentiate between accesses
from different components of the same device.

2.2.4 Confidential Compute Architecture. In the Armv9 architec-
ture, Arm introduced the Confidential Compute Architecture (CCA).
CCA [14] retains the separation between the normal world and the
secure world while introducing a new realm world. In the realm
world, confidential realms can be created and managed by the
Realm Management Monitor (RMM). To isolate the realms from
each other, CCA introduces a hardware isolation primitive called
Granule Protection Check (GPC). In GPC, each physical memory
page is treated as a granule. When a software component accesses
a physical address, GPC performs an additional check against the
Granule Protection Table (GPT) to determine if the access is permit-
ted, beyond existing checks from the MMU and TZASC. To enable

flexible isolation, the GPT follows a two-level hierarchical structure,
similar to the page table, where internal nodes point to the next
level of the GPT and the leaf nodes store granule permission. By
leveraging GPC, CCA provides a more flexible and fine-grained
isolation mechanism compared to TrustZone. However, like the
TZASC and SMMU, CCA lacks the capability to handle the internal
components inside a device. Based on our examination of the doc-
umentation2, CCA integrates the GPT into the SMMU to support
memory isolation for peripherals, meaning it inherits the SMMU’s
approach to device protection. As the SMMU cannot distinguish
between accesses from internal components of a device, CCA is
unable to mitigate the security threat originating from the MCU.

2.3 Motivation

Two key observations motivate our work on exploiting the embed-
ded MCU to attack GPU TEEs.
Powerful MCU. Our investigation reveals that the MCU is a
general-purpose processor based on Armv7-M instruction set; it
not only enhances GPU performance but also becomes the potential
target of malicious code. With a compromised MCU, the adversary
can exploit it to spy on or modify any GPU task. Unfortunately,
current GPU TEE designs lack adequate protection for the GPU
MCU, creating a significant attack surface for adversaries.
Ambiguous Isolation Boundary. As discussed in Sec. 2.2, Arm’s
security features, such as TZASC and SMMU, exhibit an ambigu-
ous isolation boundary for components inside the same peripheral
device. Though these features are designed to isolate secure compo-
nents from non-secure components, they cannot establish a clear
isolation boundary within the same devices (e.g., between the GPU
and the GPU MCU). This limitation enables the MCU to bypass the
isolation enforced by the GPU TEE and directly access sensitive
GPU data, as no clear isolation boundary exists between the GPU
MCU and the GPU.
Motivation. Overall, these observations motivate us to investigate
the security risks posed by the GPU MCU to current GPU TEEs.
Since Arm’s security features cannot distinguish between accesses
from the GPU and its internal MCU, a compromised MCU can
undermine current Arm GPU TEE due to insufficient isolation.

3 Arm GPU TEE and Threat Model

In this section, we first review state-of-the-art GPU TEEs on the
Arm platform in Sec. 3.1. We then perform a detailed security analy-
sis of these GPU TEEs and explain why a key assumption is invalid
in Sec. 3.2. Based on this analysis, we present the threat model of
our attack in Sec. 3.3.

3.1 SoTA GPU TEEs on Arm

Table 1 summarizes existing GPU TEEs on the Arm platform. As
Table 1 shows, Arm GPU TEEs can be broadly categorized into
two groups based on their design choices: VM-style and shim-style.
Fig. 3 illustrates the key differences between these two designs of
GPU TEEs. We discuss each of them below.
VM-style GPU TEEs. As illustrated in the left part of Fig. 3, VM-
style GPU TEEs utilize virtualization techniques to create a dedi-
cated VM for each GPU Trusted Application (TA). By isolating the
2CCA has not yet been implemented on commercial hardware.
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Table 1: Existing GPU TEEs on Arm platform.

Category Name Security Mechanism TCB LoC

Shim-style

StrongBox TZASC + Stage-2 1.7K
CAGE GPC + SMMU 1.3K
MyTEE Stage-2 4K

VM-style

Cronus TZASC 72.6K
GR-T TZASC + Remote VM >10M
ACAI GPC + SMMU 25.5M

App.
Kernelguest

Hypervisor
Secure Monitor

VM-Style 
GPU TEE

Trusted Untrusted

EL0
EL1

GPU

EL2
EL3
Dev.

Host
App.
Shim

Hypervisor
Secure Monitor
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GPU TEE

GPU Dec. 

Enc. 
decrypt

Host
Enc. GPU 

Driver

Ciphertext Plaintext

Dec. 

Figure 3: Comparison between two types of GPU TEEs.

entire GPU software stack in a confidential VM, the TA can directly
send sensitive data to the GPU through the guest kernel’s bundled
driver, which is considered part of the TCB.

Cronus [40] and GR-T [53] are two representative VM-style
GPU TEEs based on Arm TrustZone technology. Cronus extends
TrustZonewith a secure hypervisor tomanagemultiple confidential
VMs in the secure world and coordinate their access to the GPU. GR-
T, on the other hand, employs a remote VM to send GPU commands
to a cloud server, where a trusted client executes these commands
on an actual GPU. ACAI [58] is another VM-style GPU TEE built
on the emerging Arm CCA technology. ACAI extends CCA’s GPC
and RMM to protect GPU TAs from untrusted adversaries.

Despite providing strong isolation and compatibility, VM-style
GPU TEEs have a significant drawback: they require a large TCB. In
a VM-style GPU TEE, the entire software stack (e.g., GPU driver and
guest kernel) is bundled into a monolithic trusted VM. As shown in
Table 1, ACAI treats the whole VM as trusted, which is over 25.5M
LoC. GR-T also introduces a non-trivial TCB of size exceeding 10M
LoC. Such a bloated trusted codebase is highly error-prone and
exposes a large attack surface.
Shim-style GPUTEEs. In response to the bloated TCB in VM-style
GPU TEEs, shim-style GPU TEEs (e.g., StrongBox [25], CAGE [63],
and MyTEE [34]) have been proposed. As shown in the right part
of Fig. 3, instead of bundling the entire guest kernel into the TCB,
shim-style GPU TEEs deploy a minimal shim layer in the TCB
for critical routines, such as GPU task management, while leaving
most non-critical routines, such as performance monitoring, to the
untrusted world. Since the shim layer has limited functionality,
it must reuse part of the GPU driver in the untrusted world. To
prevent the untrusted GPU driver from accessing the sensitive data
of secure GPU tasks, shim-style GPU TEEs encrypts the sensitive
data before exposing it to the untrusted GPU driver. Subsequently,
shim-style GPU TEEs decrypt the sensitive data before sending it to
the GPU, since the GPU cannot directly operate on the encrypted
data.

StrongBox [25] is the first shim-style GPUTEE onArm endpoints.
It leverages TrustZone’s TZASC and Stage-2 address translation to
protect GPU TAs from untrusted adversaries. CAGE [63] is another
shim-style GPU TEE that utilizes the latest Arm CCA technology
to protect GPU TAs. MyTEE [34], designed for devices with limited
security features, adopts a novel design that relies solely on Stage-2
address translation to protect GPU TAs. These shim-style GPU
TEEs include only a minimal shim layer in the TCB. As shown in
Table 1, the TCB of StrongBox is just 1.7K LoC, which is orders of
magnitude smaller than the TCB of VM-style GPU TEEs.
Security of Shim-style GPU TEEs. Though shim-style GPU TEEs
achieve the design goal of low TCB, they reuse the GPU driver in the
untrusted world to handle so-called non-critical routines, such as
performance monitoring. In the following section, we will analyze
this shim-style design and show that this design choice introduces
a critical security flaw.

3.2 Security Analysis

GPUAdversary

S-Task

NS-Task4

NS-TaskS-TaskMemory

2

IRQ3MMIO1

Figure 4: Security primitives in shim-style GPU TEEs.

Despite minor differences between StrongBox [25], CAGE [63],
andMyTEE [34], their shim layers share a similar design: delegating
security-critical routines (e.g., memory management) to the shim
layer while offloading non-critical routines (e.g., GPU initialization)
to the untrusted world. Thus, shim-style GPU TEEs achieve their
security goal (i.e., a minimized TCB) while maintaining compatibil-
ity (i.e., the GPU driver is reused).

To protect these security-critical routines in the shim layer, the
following security primitives are deployed: ➀ GPU control isola-
tion (e.g., MMIO isolation); ➁ Memory protection (e.g., AES en-
cryption, GPC, and Stage-2); ➂ Interrupt isolation (e.g., GIC); ➃

Security-aware scheduler. Fig. 4 shows how these security primi-
tives mitigate different types of attacks launched by an adversary.
For instance, when a secure task is executing, the adversary might
attempt to interfere with the secure task by tampering with the
GPU control registers via MMIO. To prevent this, the GPU control
isolation (i.e., ➀ in Fig. 4) is used to block the adversary from ac-
cessing the GPU control registers during secure GPU tasks. Similar
security primitives are also applied to prevent other types of at-
tacks, such as memory corruption (➁), forged interrupts (➂), and
malicious scheduling (➃).

Table 2: Security primitives used in shim-style GPU TEEs.

➀: GPU Ctrl ➁: Memory ➂: Interrupt ➃: Scheduler ×: None.

GPU TEE GPU Mgmt. S-Task NS-Task

StrongBox × ➀➁➂➃ ➃

CAGE × ➀➁➂➃ ➃

MyTEE × ➀➁➂ ×
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We also perform a detailed analysis of the usage of these security
primitives of StrongBox, CAGE, and MyTEE for GPU management
and GPU task execution. Our findings are summarized in Table 2.
Though shim-style GPU TEEs do not deploy any security primitives
for GPU management routines, this is not considered as a security
issue. This is because the GPU management routines do not process
any sensitive data or chronologically overlap with the execution
of secure GPU tasks. Moreover, excluding these GPU management
routines from the shim layer significantly reduces the complexity of
the shim layer. Otherwise, the shim layer would become bloated and
expose a large attack surface. For example, performance monitoring
routine alone in Arm GPU driver comprises 7K LoC, which is four
times the size of the TCB of the entire shim layer in GPU TEEs like
CAGE (1.3K LoC).

From the analysis above, it seems that, by introducing a mini-
mal shim layer into the TCB, shim-style GPU TEEs achieve a good
balance between security and compatibility. However, this design
relies on a key assumption: the GPUmanagement routines left outside
the TCB are not security-critical. As we will discuss in the follow-
ing paragraph, this assumption is invalid and can be exploited to
compromise the security guarantees of shim-style GPU TEEs.
Invalid Assumption in Shim-style GPU TEEs. Though most
GPU management routines are not security-critical (e.g., perfor-
mance monitoring) and thus cannot be exploited by adversaries,
there is one exception: firmware management. Specifically, the
firmwaremanagement routine is responsible for loading the firmware
into the GPU MCU and performing necessary initialization. As dis-
cussed in Sec. 3.2, all existing shim-style GPU TEEs assume that
the firmware management routine is not security-critical; it nei-
ther processes any sensitive data nor chronologically overlaps with
the execution of secure GPU tasks. However, as we will show in
Sec. 4, the MCU is not constrained by existing security primitives
on the Arm platform and can therefore access the protected GPU
memory. Moreover, since the firmware is persistently executed in
the GPU MCU, even though the firmware management routines
do not chronologically overlap with secure GPU tasks, malicious
firmware inside the MCU continues to execute during the secure
GPU tasks. This effectively invalidates the security assumption
made by shim-style GPU TEEs and creates a new attack surface for
adversaries. Note that shim-style GPU TEEs might also suffer other
attack surfaces like fault injection [49, 59], as their power manage-
ment routines are also exposed to the untrusted world. However,
unlike Mole, such attacks must be conducted during the secure
GPU tasks. Previous works like StrongBox mitigate such attacks by
locking the power-control registers during secure GPU tasks.

Table 3: Trusted Components in Arm GPU TEEs.

Category Name Trusted Components Vulnerable

Shim-style

StrongBox Shim ✔

CAGE Shim ✔

MyTEE Shim ✔

VM-style

Cronus Driver + microOS ✘

GR-T Remote VM + Local Shim ✘

ACAI VM ✘

We also perform an in-depth study of Arm GPU TEEs regarding
their trusted components. Our findings are summarized in Table 3.

In all shim-style GPU TEEs, only a minimal shim layer is trusted,
and the firmware management routine is left outside the TCB.
Therefore, an adversary can load a malicious firmware into the
GPU MCU during GPU initialization and use it as a trampoline to
access the sensitive data processed by the GPU TEE. As a result, we
mark shim-style GPU TEEs like StrongBox as vulnerable in Table 3.
However, the same does not apply to the VM-style GPU TEEs, as
they adopt a stronger security assumption by treating the entire
driver as trustworthy and free of vulnerability. As a consequence, an
adversary cannot exploit the GPU driver to arbitrarily manipulate
the GPU MCU. We thus mark VM-style GPU TEEs like Cronus as
not vulnerable in Table 3.
Deployment of Shim-style GPU TEEs. Though shim-style GPU
TEEs are still academic prototypes, industry involvement (e.g.,
CAGE/StrongBox is contributed by authors from Alibaba) suggests
future production deployment. Our research highlights the com-
plexity of this design and warns the community and vendors about
the serious, yet overlooked, threat. In addition to GPU, this shim-
style design is frequently explored by researchers to protect other
peripherals while minimizing the TCB [47, 71]. For example, Zhou
et al. [71] isolate the USB peripherals by outsourcing most of the
USB driver to the untrusted world, achieving a TCB reduction of
99%. Therefore, we emphasize that Mole’s security implications
should not be underestimated, as this shim-style paradigm is not
only being developed by industry (e.g., Alibaba) but is also a popular
research direction in academia. Mole highlights that careful consid-
eration of hardware complexity remains crucial when employing
this approach.

3.3 Threat Model

Since Mole is based on the invalid assumption made by shim-style
GPU TEEs, our threat model aligns with the threat model of shim-
style GPU TEEs. We assume a high-privileged adversary who has
control over the GPU driver outside the shim layer’s TCB. Conse-
quently, we assume the attacker has control over the GPU firmware
management, which is responsible for loading the firmware into
the GPUMCU.We note that this threat model aligns with the threat
model of shim-style GPU TEEs [25, 34, 63]. Moreover, we also an-
alyze the codebase of the vulnerable GPU TEEs (i.e., StrongBox,
CAGE, and MyTEE) and confirm that the firmware management
routine is left outside the TCB and can be exploited by the attacker.
Clarification and Notation. Since Mole is not applicable to VM-
style GPU TEEs, for the remainder of this paper, we will focus on
the shim-style GPU TEEs. For brevity, we will use GPU TEEs to
refer to shim-style GPU TEEs and only specify shim-style GPU
TEEs or VM-style GPU TEEs when necessary.

4 Security Implications of GPU MCU

As mentioned in Sec. 3.2, the presence of the GPU MCU invali-
dates the assumptions of GPU TEEs and leads to exploitation. In
this section, we thoroughly explore the design of the GPU MCU,
reveal its security implications, and demonstrate the feasibility of
implementing Mole.
Setup. We explore the GPU MCU design through experiments on
a RK3588 IoT board [56] and validate our findings on a Google
Pixel 8 [32], a popular mobile phone with a Tensor G3 processor.
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Both devices are equipped with the Arm Mali GPU required by
Mole and standard Arm security features for GPU TEEs. As for
GPU TEEs, we choose StrongBox as the target since the CCA used
by CAGE is not available on commercial hardware, and MyTEE
relies solely on Stage-2 isolation, which is a subset of StrongBox.
That said, we received confirmation from authors of CAGE, MyTEE
and StrongBox that Mole is applicable to their designs [11].

We also perform a comprehensive study of the Android Open
Source Project [4], MediaTek [8] and Linux upstream [5], and find
they use similar or even identical firmware from Arm upstream.
This demonstrates that the design of embedded MCUs among dif-
ferent devices is consistent, indicating our findings are applicable to
different real-world devices. The following sections are organized
as follows: Sec. 4.1 introduces the architecture of the MCU; Sec. 4.2
discusses the possibility of tampering with the MCU firmware;
Sec. 4.3 explores the effectiveness of different memory protection
mechanisms against the MCU; Sec. 4.4 investigates how to trigger
malicious code through in-MCU interrupt handling mechanism.

4.1 MCU Architecture

Since limited information is available about the MCU on the Arm
Mali GPU, we conducted a thorough reverse-engineering of the
firmware binary and an in-depth analysis of the GPU kernel driver.
This part was performed manually by two experienced authors and
took 2 months to complete. We summarize our findings in Fig. 5.
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Figure 5: GPU MCU architecture.

As shown in ➀ MCU Internal of Fig. 5, the GPU MCU is a
Cortex-M [18] series MCU with the Armv7-M instruction set [15].
During the analysis of the GPU kernel driver, we find that the MCU
is equipped with a Memory Management Unit (MMU). The MMU
supports three levels of page tables and partitions the MCU’s mem-
ory into different sections with specific permission (e.g., code and
data). Note that standard Cortex-M MCUs do not have an MMU;
this is a customized design for GPU. Unlike a CPU MMU, this MMU
supports up to 16 address spaces with 16 different page tables. The
0th address space is reserved for the GPU MCU while the rest are
used for different GPU tasks. Since the MMU can only be config-
ured by the OS kernel, it effectively isolates the GPU MCU from
memory used by GPU tasks; we will discuss how we deactivate
this isolation by manipulating MCU’s page table in Sec. 4.3 under
the assumption of GPU TEEs. In addition to MMU, the MCU also
includes a Memory Protection Unit (MPU) [16] to check its memory
access. Unlike MMU, MPU is a standard feature of Cortex-M series,
supporting up to 8 regions with configurable permission. Since the
MPU is configured by the firmware, its protection can be easily
disabled by the malicious firmware.

As illustrated in ➁ Shared Memory of Fig. 5, the GPU MCU
and CPU share a memory region for communication. This shared
memory is mapped to the same physical memory in both the CPU
and the MCU. On the MCU, the address is fixed at 0x4000000, while
on the CPU, the address is dynamically allocated by the untrusted
kernel driver. This shared memory is used to transfer metadata for
GPU tasks between the CPU and the GPU. Note that GPU TEEs
protect the shared memory using security primitives like CCA [14]
during secure GPU tasks. However, as we will discuss in Sec. 4.3,
the MCU is not constrained by these security primitives on the
CPU side.

The MCU follows an event-driven execution model and is only
active upon incoming events. As shown in ➂ IRQ Channel of Fig. 5,
the CPU can send IRQs to wake up the MCU to process GPU tasks.
Similarly, the MCU can send an IRQ to CPU by writing to its IRQ
controller located at the MMIO address 0x40000000. The MCU uses
IRQs to notify the CPU of events like task completion. Moreover, our
investigation shows that this MCU follows the same IRQ definition
as Cortex-M [18] with 15 types of exceptions and 239 external
interrupts. We will discuss how we leverage this IRQ mechanism
to trigger malicious code in Sec. 4.4.

Implication 1. The GPU MCU is sufficiently sophisticated to
execute arbitrary malicious code, potentially compromising the
protection of GPU TEEs.

4.2 Tampering with Firmware

In this section, we investigate whether the untrusted kernel can
tamper with the firmware of the GPU MCU and load malicious
code. As Sec. 3.2 points out, to reduce the TCB, GPU TEEs rely on
the untrusted kernel to initialize the GPU, including loading the
firmware. To verify whether the untrusted kernel can indeed tam-
per with the firmware, we conducted the following experiment. In
GPU TEEs, the firmware is loaded by the untrusted kernel from the
/lib/firmware directory. With the knowledge from Sec. 4.1, we
add a simple shellcode prior to the reset handler in the firmware
binary to write a fixed value 0xdeadbeef to the shared memory
between GPU and CPU. As the reset handler is executed once
the MCU is booted up, we should observe the fixed value in the
shared memory if the firmware is successfully tampered with. Then,
we replace the original firmware with the patched one to initial-
ize the GPU and observe 0xdeadbeef in the shared memory, in-
dicating a successful tampering. Neither the GPU TEE nor other
components (e.g., the GPU itself) implement any verification mech-
anism to detect firmware tampering. To further verify our results,
we reviewed the source code of StrongBox [25], CAGE [63] and
MyTEE [34], and found that none of them equips a verification
mechanism for the GPU MCU firmware.

During the experiment, we observe that a hash value named
GIT_SHA is hard-coded in the firmware, which is displayed in the
kernel log. However, our investigation shows that this hash is
neither used for firmware verification nor protected by any security
primitives (e.g., secure storage or digital signature). Moreover, even
if the hash were used for verification, the adversary can tamper with
the firmware in a Time-of-Check-Time-of-Use (ToCToU) manner;
we will discuss this in Sec. 9.2.2.
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Implication 2. Due to the lack of a verification mechanism, the
untrusted kernel can arbitrarily tamper with the firmware of
the GPU MCU.

4.3 Bypassing Memory Protection

In this section, we aim to answer two key questions: 1) How can
the secure memory be mapped into the address space of the MCU?
2) Can the GPU MCU bypass the security primitives deployed by
GPU TEEs (e.g., SMMU, TZASC, Stage-2 MMU)? Though GPU TEEs
also encrypt the sensitive data with cryptographic primitives like
AES [52], the sensitive data must be decrypted for the GPU to
process. As a result, the MCU can access sensitive data while the
GPU is processing the decrypted plaintext.

In the first question, the main challenge is that the GPU MMU
isolates the memory of the GPU MCU and other GPU tasks into
different address spaces (see Sec. 4.1); the GPUMCU only has access
to themetadata of the GPU tasks for scheduling purposes. Moreover,
during secure GPU tasks, GPU TEEs like StrongBox prevent the
untrusted kernel from further configuring the GPU MMU. This
blocks an adversary from directly mapping the secure memory
into the address space of the MCU. To circumvent this isolation,
we design the following attack vector. When the untrusted kernel
initializes the GPU, we insert a page into the page table hierarchy
of the GPU MMU and also map this page into the address space of
the MCU. Thus, by modifying the content of that page, the MCU
can map the secure memory into its address space dynamically.

For the second question, we conduct experiments with the secu-
rity primitives used in existing GPU TEEs, TZASC, Stage-2 transla-
tion and SMMU.3 For the TZASC, we follow the setup in StrongBox
and CAGE. On the GPU TEE side, we reserve a 1MB secure memory
region for the GPU TEE and fill it with 0xdeadbeef as the secret.
We then configure TZASC to block any non-secure access to this
region. As GPU must be able to access this region to process secure
tasks, we configure the TZASC register to allow access with GPU’s
NSAID. Additionally, the GPU and CPU share a memory region at
0x4000000 for non-secure communication (see Sec. 4.1). We confirm
that this setup aligns with existing GPU TEEs that use TZASC. On
the MCU side, we use the above-mentioned attack vector to map
the secure memory into MCU (at 0x4200000) dynamically and use
the shellcode in Fig. 6 to access the secure memory. Then, simi-
lar to the shellcode insertion described in Sec. 4.2, we insert this
piece of code before the reset exception handler, which will be
executed once the MCU boots up. As shown in Fig. 6, this simple
shellcode copies data from the secure memory (i.e., 0x4200000) to
the non-secure shared memory (i.e., 0x4000000). We then read the
non-secure memory to verify that the MCU successfully retrieved
the secret value (i.e., 0xdeadbeef) under the protection of GPU TEEs.

In addition to the TZASC, we also conduct the same experiment
with Stage-2 translation and SMMU. Specifically, we use the same
setup as StrongBox, CAGE, and MyTEE. We configure the Stage-2
MMU to block any access from the untrusted world and the SMMU

3To our knowledge, only these security primitives are available on commercial hard-
ware; Arm CCA has not yet been implemented in hardware; CAGE and ACAI use
emulators or TrustZone to simulate CCA hardware.

1 ldr r0, 0x4200000 // r0 = &secure

2 ldr r1, [r0, 0] // r1 = *r0

3 ldr r2, 0x4000000 // r2 = &non_secure

4 str r1, [r2, 0] // *r2 = r1

Figure 6: Shellcode to access secure memory.

to block any access from untrusted peripherals. We repeat the above
experiment and obtain the same result.

Implication 3. The GPUMCU can bypass the security primitives
deployed by GPU TEEs and access the secure memory.

4.4 Triggering Malicious Code

In this section, we investigate how to trigger the malicious code
using MCU’s interrupts. As mentioned in Sec. 4.1, the interrupt
handling is critical to the execution of the GPU MCU. Specifically,
the GPU MCU follows an event-driven model, where the MCU
is triggered by different events like task submission. As a result,
though Sec. 4.2 and Sec. 4.3 have already demonstrated that the
MCU can be exploited by adversaries to execute malicious code
and even access secure memory, we still need to know which IRQ
event can be used to trigger the malicious code.

1 ldr r1, IRQ address // r1 = IRQ address

2 ldr r0, 0x4200000 // r0 = &share memory

3 str r1, [r0, 0] // *r0 = r1

Figure 7: Shellcode to explore IRQ handler.

To find the answer, we conduct the following experiments. Ac-
cording to the investigation in Sec. 4.1, the GPU MCU uses the
same IRQ mechanism as a standard Cortex-M MCU [17], with 15
exceptions (e.g., reset) and 239 interrupts (e.g., timer), of which 15
IRQs are used by the MCU. We then prepend the shellcode in Fig. 7
to every IRQ handler with the techniques described in Sec. 4.2; this
shellcode simply writes the address of the IRQ handler it prepends
to the shared memory. We also build a user-space program to sub-
mit various GPU tasks to the GPU and observe which IRQ handler
is triggered during the execution of the GPU tasks. As a result, we
find that IRQ 2 is triggered when the GPU receives a new task, and
IRQ 0 is triggered when the GPU completes the task and is ready
to notify the CPU. Fig. 8 depicts this IRQ handling process. When
the CPU sends a new task to the GPU, IRQ 2 is triggered on the
MCU side, and the MCU then dispatches the task to the available
compute unit. Similarly, when the compute unit completes the task,
IRQ 0 is triggered on the MCU side, and the MCU then notifies the
CPU to collect the result.

Implication 4. By compromising IRQ handlers, adversaries can
trigger malicious code during critical events, such as secure task
submission.

Conclusion. Given the security implications introduced by the
GPU MCU, we conclude that this neglected component of the GPU
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Figure 8: IRQ handling of GPU MCU.

poses a significant security threat to current GPU TEEs. In the
following sections, we will present Mole, a novel attack against
GPU TEEs, based on these findings.

5 Mole

In this section, we first revisit the design of a typical GPU TEE and
analyze how Mole compromises its security properties. Then we
describe the workflow of Mole.
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Figure 10: Revisited GPU TEE workflow.

5.1 Revisit GPU TEE

Fig. 10 depicts the workflow of a typical GPU TEE: ➀ A user appli-
cation transmits an encrypted GPU task to the secure monitor in
EL3. Though shim-style GPU TEEs rely on the untrusted driver to
handle miscellaneous routines like task submission, the encryption
ensures that the secure GPU task is protected. ➁ After the driver
finishes configuring the task, the shim layer in secure monitor de-
crypts the encrypted data, configures the memory as protected to
block CPU access and loads the plaintext into the memory for GPU
to process. ➂ The GPU begins to process these secure tasks and
writes the results back to the protected memory.

This process ensures that the sensitive data is always protected
by cryptographic encryption (e.g., AES) or memory protection prim-
itives (e.g., CCA), preventing any untrusted entity from accessing
the sensitive data. However, this design neglects the presence of
GPU MCU, which is an embedded part of the trusted GPU but is
initialized and configured by the untrusted kernel. As shown in
Fig. 10, during the initialization of the GPU, the untrusted kernel
is responsible for loading the firmware binary into the GPU MCU.
Moreover, our experiment in Sec. 4 shows that there is no mech-
anism to prevent the untrusted kernel from loading a tampered
firmware, and the MCU, as a trusted part of GPU TEE, can access
the sensitive data of secure GPU tasks. Though GPU TEEs deploy
security primitives like TZASC to prevent untrusted kernel from
configuring GPU, these security primitives are only effective dur-
ing the execution of secure GPU tasks (see Sec. 3.2). Therefore, the
untrusted kernel can easily load a tampered MCU firmware during

GPU initialization, allowing the trusted MCU to execute malicious
code during the secure GPU tasks and compromise the protection.

In sum, though GPU TEEs are well-designed to prevent untrusted
adversaries (e.g., the kernel) from accessing secure GPU tasks, it
fails to account for the possibility that trusted components (e.g.,
GPU MCU) can be exploited to compromise the GPU TEE.

5.2 Mole Workflow

In this section, we introduce the workflow of Mole. Fig. 9 illustrates
three major stages of Mole: 1) Firmware Initialization, 2) Data
Exfiltration, and 3) Result Tampering.
Firmware Initialization. As shown in Fig. 9, Mole begins with
the initialization of the malicious firmware. During the GPU ini-
tialization, the untrusted kernel loads a tampered firmware into
the GPU MCU. Simultaneously, a shared memory region is also
established between the GPU and CPU for communication, and a
secure memory region is reserved for GPU TEE.
Data Exfiltration. One of the main attack scenarios of Mole is
the exfiltration of sensitive data from secure GPU tasks. As illus-
trated by Fig. 9, the exfiltration process consists of three steps:
➀ The victim application submits a secure GPU task to the GPU
for processing. Though the task memory is encrypted, its address
is exposed to the untrusted GPU driver. ➁ The kernel places the
victim address into the shared memory for the MCU. Note that
the untrusted kernel cannot directly access this address. ➂ Upon
the task execution (i.e., when MCU receives IRQ 2, see Sec. 4.4),
the malicious MCU inside GPU reads the secure memory at the
victim address and stores the results into the shared memory. The
untrusted kernel can then read the results from the shared memory.
Result Tampering. Similar to the data exfiltration, Mole can also
tamper with the results of secure GPU tasks. As shown in Fig. 9,
the result tampering process also consists of three steps: ➀ The
kernel prepares the tampered result in the shared memory. ➁ Upon
the task completion (i.e., when MCU receives IRQ 0, see Sec. 4.4),
the malicious MCU overwrites the original result in the secure
memory with the tampered one in the shared memory. ➂ The user
application reads the tampered result from the secure memory.

6 Implementation

The implementation of Mole consists of two main components: a
Rust-based parser (940 lines of code) for interpreting and tampering
with the closed-source MCU firmware, and a kernel module (1,400
lines of C code) for loading the malicious firmware. Below, we
elaborate on the key aspects of the implementation.
Bypassing the MCU MPU. As discussed in Sec. 4.1, the MCU
is equipped with a Memory Protection Unit (MPU) to restrict its
memory access. Our analysis reveals that the MPU is configured
to allow code execution only within the address range 0x800000
to 0x820000. Memory outside this range is marked with the NX
(No-Execute) bit; any attempt to execute code from such memory
triggers an access violation fault. This poses a significant challenge
for Mole when attempting to inject arbitrary code into the MCU’s
memory. However, we discover that the MPU is configured by the
MCU firmware itself, which means it can also be modified by the
firmware. Fig. 11 illustrates the original MPU configuration code
in the firmware. Specifically, the code configures two registers:
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Figure 9: Mole workflow.

the MPU base register (MPU_RBAR) and the MPU range register
(MPU_RASR). By modifying the value of MPU_RASR, whose bits[5:1]
determine the size of the configured range (calculated as 2bits[5:1]+1),
we are able to extend the executable memory region. By setting
MPU_RASR to 0x50b0023, we increase the size of the executable
region to 0x840000, providing ample space for our injected code.

1 ldr r0, 0xe000ed9c // r0 = <MPU_RBAR>

2 ldr r1, 0x800015 // base: 0x800000; valid: 1; id: 5

3 str r1, [r0, 0] // *r0 = r1

4 ldr r0, 0xe000eda0 // r0 = <MPU_RASR>

5 ldr r1, 0x50b0021 // size: 0x20000; NX: 0; valid: 1

6 str r1, [r0, 0] // *r0 = r1

Figure 11: MPU configuration code.

Shellcode Injection.With the MPU bypassed, we are able to inject
custom shellcode into the MCU firmware. Fig. 12 illustrates the core
component of the shellcode used to implement Mole.

1 ldr {r0, r1, r2}, {src_begin, src_end, dst_begin}

2 _loop:

3 ldr r3, [r0], 4 // tmp = *r0; r0 += 4

4 str r3, [r2], 4 // *r2 = tmp; r2 += 4

5 cmp r0, r1 // if r0 < r1

6 blt _loop2 // goto _loop

Figure 12: Mole-injected shellcode.

As shown in Fig. 12, the shellcode accepts three parameters
from the untrusted memory provided by the privileged adversary:
src_begin, src_end, and dst_begin. The shellcode performs a
straightforward copy operation, transferring data from the source
(src) to the destination (dst). In a data exfiltration scenario, the
adversary can configure src to point to the memory region contain-
ing sensitive data and dst to the untrusted memory. Conversely, in
a result tampering scenario, the adversary can prepare tampered
data in the untrusted memory, set src to this location, and direct
dst to the memory region where the result is stored.

7 Evaluation

We evaluate Mole by addressing the following research questions:
RQ1: How many real-world devices are equipped with the GPU

MCU and vulnerable to Mole?

RQ2: How does Mole perform in real-world scenarios?
RQ3: How much overhead does Mole impose on the victim appli-

cation?

7.1 RQ1: GPU MCU on Real-World Devices

Mole leverages theMCU embedded in theArmMali GPU to execute
the attack. This MCU is included in all Arm Mali GPUs released
after 2021. To assess the prevalence of such MCUs in real-world
devices, we conducted a comprehensive survey of devices equipped
with GPU MCUs. As shown in Table 4, Mali GPUs—one of the most
widely used Arm GPU architectures—are extensively integrated
into a variety of devices. For example, Google has adopted ArmMali
GPUs in all its mobile phones since the Pixel 6 series [32]. Similarly,
MediaTek’s System-on-Chip (SoC) designs incorporate Arm Mali
GPUs, which are utilized by numerous mobile phonemanufacturers,
including Vivo, Redmi, Honor, and Huawei [36, 61, 68]. Additionally,
Rockchip has integrated Mali GPUs into its latest IoT devices [56].
MCU in GPUs.While this work focuses on Arm Mali GPUs, we
clarify that the MCU design is not exclusive to Arm Mali GPUs.
For instance, NVIDIA incorporates an embedded RISC-V chip [9],
and AMD utilizes a Micro Engine Scheduler (MES) chip [3]. How-
ever, hardware vendors like NVIDIA appear to enforce a “security
through obscurity” practice by restricting technical disclosure re-
garding their MCU architectures. These vendors implement certain
kinds of verification mechanisms to restrict the MCU access ex-
clusively to their proprietary tools. Although we have not yet
bypassed the verification implemented in these MCUs, we believe
the findings of this work could potentially be generalized to other
GPU architectures and provide valuable insights for future research.

RQ1 Ans. Arm Mali GPUs are utilized in a wide range of de-
vices from various SoC and device vendors, includingHuawei,
Xiaomi, Vivo, and others. This widespread adoption under-
scores the broad applicability of Mole.

7.2 RQ2: Real-World Attack Scenarios

To evaluate the attack capabilities of Mole in real-world scenarios,
we select in-GPU AES encryption and the widely-used object de-
tection model YOLOv4-tiny as the victim applications. We select
these cases because they are also used in recent research attacking
TEEs [23, 69]. Technically, Mole directly transmits TEE-protected
memory to the untrusted kernel, indicating a fluent extension to
more complicated cases. The experiment setup aligns with the con-
figuration described in Sec. 4.
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Table 4: Real-world devices with Arm Mali GPUs.

SoC Vendor SoC Device Vendor Usage Representative Devices

HiSilicon Kirin 8000 Huawei Mobile Phone Huawei Nova 12,13
Huawei Nova Flip

Rockchip RK3588, RK3588s Radxa, SinoVoip
Forlinx, Rockchip IoT Device Rock Pi 5B, 5ITX, BPI-RK3588

TB-RK3588X, OK3588-C

Google Tensor G2,G3,G4 Google Mobile Phone
Tablet

Pixel 6,7,8,9
Pixel Tablet 1,2

MediaTek

MT6886, MT6878, MT6895
MT6896, MT6983, MT6985

MT6989

Vivo, Redmi, Honor
Oppo, Realme, Huawei

OnePlus, Motorola
Xiaomi

Mobile Phone
Tablet

Vivo V27, S17e, V40e, Z9s, X90
Oppo A94, Reno 12, K10, FindX7

Redmi Note 13, 14, K60, K70
Realme 70, 13+, P1, Neo7

Motorola 50 series, OnePlus Ace 2V
Xiaomi 14T Pro, Huawei Nova 8, Honor 70 Pro

Plain KeysIN Initial Key Round Key 1 Round Key 10...

CiphertextOUT derive derive

Figure 13: AES key extraction.

7.2.1 AES Key Extraction. As shown in Fig. 13, the GPU kernel
for AES-128 encryption [1] accepts two input buffers: plaintext
and keys and one output buffer: ciphertext. According to the AES
standard [52], the key buffer stores a 16-byte initial key along with
ten 16-byte round keys derived from the initial key. To compromise
the AES encryption, we only need to use Mole to extract the initial
key from the key buffer. We executed the AES-128-ECB algorithm
to encrypt a 128 MB data buffer while simultaneously using Mole
to exfiltrate the initial key from the key buffer. With Mole active,
the AES encryption application completed the encryption in 843.3
ms, while Mole introduced an additional overhead of 0.03 ms. This
overhead is negligible compared to the total encryption time.

7.2.2 Tampering with Object Detection. To tamper with the de-
tection results of the YOLOv4-tiny model, we first analyze the
model’s output format. Subsequently, we prepare tampered results
in the same format and use Mole to replace the original results,
as described in Sec. 5.2. As shown in Fig. 14 and the output of the
YOLOv4-tiny model consists of two layers, each containing 13×13
and 26×26 bounding boxes, respectively. Each bounding box pro-
duces three candidate vectors, each comprising 85 values (totaling
3×85=255 values). These values include the confidence score 𝑑 , the
coordinates of the detected object (𝑥,𝑦, ℎ,𝑤), and the probabilities
𝑃 that the detected object belongs to 𝑐𝑛 from 𝑃𝑐0 to 𝑃𝑐79 . Based on
the quality of these candidate vectors, one is selected as the final
output. Using this understanding, we prepare tampered results with
dimensions of (13 × 13, 3 × 85), and (26 × 26, 3 × 85), ensuring they
conform to the output format of YOLOv4-tiny.

We prepared three distinct types of attack scenarios by replacing
the original outputs. Fig. 15 illustrates the effects of these attack
vectors. Fig. 15a displays the original output of YOLOv4-tiny, which
accurately detects three objects in the image: a person, a car, and
a stop sign. In Fig. 15b, the detection results are tampered with
by Mole, where the identities of the stop sign and the car are
swapped. Fig. 15c demonstrates how Mole can remove the person

Two Output Layer
13*13, 26*26

(d, x, y, h, w, Pc0, ... ,Pc79)
(d, x, y, h, w, Pc0, ... ,Pc79)
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3*(1+4+80)=255
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input

hidden

output

... GPU
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Figure 14: Output format of YOLOv4-tiny.

and the stop sign from the detection results entirely. Finally, Fig. 15d
shows a scenario where Mole relocates the detected person to an
incorrect position. As shown in Fig. 15, Mole can easily tamper
with the outputs of models like YOLOv4-tiny. Since such models
are widely used in critical applications such as autonomous driving,
we conclude that Mole poses a significant threat to real-world GPU
applications. For instance, an attacker could remove the person and
stop sign from the detection results, potentially causing regulatory
violations or even fatal accidents in autonomous driving scenarios.
In terms of performance overhead, the tampering process takes
approximately 0.1 ms, which is negligible compared to YOLOv4-
tiny’s detection time of 5388.3 ms.
Clarification. We clarify that Mole’s tampering is fully deter-
ministic and independent of the input content. Thus, our attack
demonstration here is not limited to YOLOv4-tiny. It is a general
attack that is applicable to other object detection tasks and, more
broadly, to other neural network-based applications.

RQ2 Ans. Mole is capable of extracting secret keys from
in-GPU AES applications and tampering with the outputs of
neural network models such as YOLOv4-tiny. These capabil-
ities highlight the serious threat Mole poses to real-world
GPU TEE applications.

7.3 RQ3: Mole Efficiency

The efficiency of Mole affects its stealthiness. If the execution time
of the GPU task increases significantly due to Mole, the adversary
risks detection. In this section, we evaluate Mole using benchmarks
from StrongBox and CAGE [30, 31, 35, 37, 44].4 We follow the same

4MyTEE focuses on secure I/O in general and does not include GPU-specific
benchmarks.
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Figure 15: Mole-tampered results of YOLOv4-tiny.

experimental setup as in RQ2 and Sec. 4. In all benchmarks, Mole
is configured to exfiltrate all sensitive data sent to the GPU.
7.3.1 Rodinia Benchmark. We selected six test cases from the
Rodinia benchmark [31]. Specifically, we chose one lightweight test
case (K-nearest neighbors), three medium-weight test cases (LU
decomposition, Pathfinder, and Hotspot3D), and two heavyweight
test cases (Gaussian and LavaMD). This selection aligns with the
setups used in StrongBox [25] and CAGE [63]. Table 5 presents the
overhead introduced by Mole in terms of execution time and the
size of exfiltrated data.

Table 5: Overhead of Mole on Rodinia benchmark.

Time (ms)

Test Size(MB) GPU TEE Mole Slow. Spd(MB/s)

KNN 0.49 139.3 153.8 14.5 33.8
LUD 16.0 1929.2 2235.1 398.7 40.1
H3D 24.0 4161.8 4693.8 532.0 45.1
PF 38.1 1065.8 1873.4 807.6 47.2
GS 32.0 19914.0 20665.9 751.9 42.6
LMD 63.4 5318.6 6713.9 1395.3 45.4

From Table 5, Mole exfiltrates all sensitive data sent to the GPU
at an average speed of 41.1 MB/s. In a real-world scenario, an at-
tacker could exfiltrate sensitive data in multiple batches to further
optimize the process. For instance, exfiltrating 1 MB of sensitive
data with Mole takes approximately 20 ms. Additionally, as demon-
strated in Sec. 7.2, real-world attacks typically target a small amount
of data (e.g., cryptographic keys), which can be exfiltrated in a neg-
ligible time of less than 1 ms.
7.3.2 Neural Network. We also evaluate the overhead of Mole
using three popular neural network models: LeNet-5, SqueezeNet,
and MobileNet-v1 [35, 37, 44]. This setup aligns with the configu-
rations used in StrongBox and CAGE. Additionally, we evaluate a
more computationally intensive model, YOLOv4-tiny [30]. In these
experiments, Mole is configured to exfiltrate all weights from the
neural network models.

Table 6: Overhead of Mole on neural network models.

Time (ms)

Test Size(MB) GPU TEE Mole Slow. Spd(MB/s)

LeNet-5 0.47 1833.9 1854.7 20.9 22.5
SqueezeNet 10.0 2425.9 2637.6 211.8 47.3
MobileNet-v1 16.2 8628.2 8976.5 348.4 46.6
YOLOv4-tiny 48.2 6295.8 7338.6 1042.8 46.2

Table 6 shows the overhead introduced by Mole in terms of ex-
ecution time and the size of exfiltrated data. From the table, Mole
incurs a maximum slowdown of approximately one second. Similar
to the Rodinia benchmark, Mole exfiltrates sensitive data at an aver-
age speed of 40.5 MB/s. For transparently extracting model weights,
the adversary can exfiltrate sensitive data in multiple batches to
obtain all weights from the neural network models without severely
affecting performance. For tampering with the output, as described
in Sec. 7.2, the adversary only needs to intercept a small amount of
data from the neural network model (e.g., detection results), which
can be completed in a negligible time of less than 1 ms.
Intact Functionality. In addition to the performance overhead,
we confirm that in all benchmarks, the functionality of the victim
application remains unaffected by Mole. Furthermore, the sensitive
data extracted by Mole precisely matches the data transferred
between the victim application and the GPU.

RQ3 Ans. Mole can exfiltrate data from a GPU TEE at an
average rate of over 40 MB/s without impacting the function-
ality of the victim application, making it sufficiently efficient
for real-world attacks.

8 Related Works

In this section, we review other related works on GPU security.
Note that we have already reviewed highly relevant works on Arm
GPU TEEs in Sec. 3, where we analyzed their designs in detail.
GPU-based Attacks. Several prior works have examined the se-
curity of GPU applications. Lee et al. [46] discovered that both
NVIDIA and AMD GPUs fail to initialize the newly allocated mem-
ory, potentially leaking data from previous users. A similar attack
focuses on large language models [57], leveraging the leftover lo-
cal memory in GPUs to leak sensitive information. Researchers
have also focused on buffer overflow vulnerabilities. Miele [48]
demonstrated that buffer overflow vulnerabilities in GPU could
be exploited to overwrite function pointers and thereby subvert
the control flow. A subsequent study [26] provided a detailed anal-
ysis on heap overflow vulnerabilities. Park et al. [54] presented
the first attack on deep neural network, revealing that code pages
on NVIDIA GPUs are writable. Most recently, Guo et al. [33] suc-
cessfully located the return address on GPUs, demonstrating that
return-oriented programming (ROP) attacks are feasible on GPUs.

Apart from memory corruption, there have also been studies ex-
ploring potential side-channel attacks on GPUs. Jiang et al. [41, 42,
43] presented a series of works that recover AES keys using GPU
side-channels. Similarly, Trident [13] leveraged a cache-conflict
side-channel to extract key from GPU implementations of AES.
Wang et al. [65] exploited the timing side-channel of compression
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algorithms used in GPU communication to recover data. Naghibi-
jouybari et al. [50, 51] investigated the security risks of sharing
a single GPU among multiple users. Though NVIDIA developed
the vGPU technology [2] in response to these attacks, Zhang et al.
[70] showed that the last-level TLB is still shared among different
vGPUs, which could be used to establish covert channels between
colluding entities.

The above discussion highlights that existing works mainly focus
on memory corruption and side-channel attacks on GPU. To the
best of our knowledge, Mole is the first work that discusses the
security risks brought by the embedded MCU in modern GPUs.
Firmware Attack. Prior research has demonstrated the feasibility
of conducting attacks through firmware manipulation. For instance,
Cui et al. [24] exploited a remote firmware update mechanism
to deploy malicious firmware on HP LaserJet printers. Similarly,
iSeeYou [22] bypassed hardware safeguards to disable the camera
indicator on Apple devices, enabling covert surveillance. More re-
cently, FANDEMIC [60] introduced a firmware-based attack on
power management circuits, which could cause permanent hard-
ware damage. Additionally, Ibrahim et al. [38] and Wu et al. [67]
conducted comprehensive analyzes of IoT security vulnerabilities,
highlighting weaknesses in firmware update mechanisms across
various devices and their companion applications.
GPU-oriented Defenses. In addition to GPU TEEs designed for
integrated GPUs on Arm platforms, similar efforts have been made
for dedicated GPUs from NVIDIA and AMD [39, 62, 72]. Volos et al.
[62] proposed Graviton, a GPU TEE that incorporates customized
hardware to secure the communication between the GPU and the
CPU. HETEE [72] adopts a similar approach to secure the GPU-
CPU communication over the PCIe bus. Jang et al. [39] explored
the possibility of re-purposing the SGX technology to secure GPU
memory. These works primarily focus on securing the plaintext
communication between the GPU and the CPU to defend against
privileged adversaries outside the GPU itself. In contrast, Mole
exploits the MCU inside the GPU to launch attacks, conceptually
bypassing the defenses proposed in these works. Given that the
MCU design is widely adopted in modern GPUs [3, 9], Mole could
potentially be extended to dedicated GPUs from NVIDIA and AMD.

In addition to GPU TEEs, a series of works aim to enhance
the memory safety of GPU applications [27, 28, 45]. ClArmor and
GMOD [27, 28] introduced a Canary-like mechanism on GPU to pre-
vent stack corruption. Lee et al. [45] implement a bounds-checking
mechanism on GPUs using customized hardware.

9 Discussion

In this section, we discuss the potential extensions and counter-
measures of Mole.

9.1 Potential Mole Extension

There are several potential extensions of Mole, including attacks
involving an unprivileged adversary and supply chain poisoning.
Attack with Unprivileged Adversary. In the current design of
Mole, we assume a high-privileged adversary, such as the OS ker-
nel, which aligns the threat model of GPU TEEs. We now explore
the attack model in the context of an unprivileged adversary. To
date, there are 47 CVEs associated with the Arm Mali GPU driver,

indicating that an attacker could use these vulnerabilities to over-
write the GPU MCU firmware [7] and launch Mole. Though the
MCU is restricted by the GPU’s MMU and SMMU, which limits its
access to arbitrary system memory, the MCU could tamper with the
GPU computation with its current capability (e.g., task scheduling)
or cause system freezes by launching an IRQ flooding attack.
Supply Chain Poisoning. During the development of Mole, we
observed that the firmware of the GPU MCU is distributed in a bi-
nary format. Furthermore, our investigation in Sec. 4.2 reveals that
the firmware lacks verification mechanism. The absence of verifica-
tion implies that an attacker could forge firmware and distribute it
along the supply chain. To understand the potential impact of this
threat, we investigate the distribution channels of major vendors
for the GPU firmware; Table 7 summarizes our findings.

Table 7: Distribution channels of MCU firmware; Bundled

means the firmware is bundled with pre-installed software.

Vendor Usage Distribute via Verified #Ref.

Google

Mobile Phone
Tablet Bundled ✘ 0

MediaTek

Mobile Phone
Tablet

Bundled
GitHub ✘ 2

HiSilicon

(Huawei)

Mobile Phone Bundled ✘ 0

Rockchip IoT Device GitHub
GitLab ✘ 41

From Table 7, we observe that the firmware of the GPU MCU is
primarily distributed in two ways: either bundled with pre-installed
software or hosted on a public code repository. As shown in Ta-
ble 7, most vendors opt to bundle the firmware directly with the
software, which generally ensures its integrity. However, MediaTek
and Rockchip also host their firmware on public code repositories
such as GitHub [8, 10]. Notably, Rockchip uses GitHub/GitLab as its
primary distribution channel for its firmware, resulting in 41 down-
stream references to the firmware repository [10]. Moreover, when
we contacted MediaTek, they denied that the firmware distributed
on GitHub originates from them, despite its misleading naming.5
This highlights the challenges of maintaining a healthy and trans-
parent supply chain for firmware distribution. To make matters
worse, as shown in Table 7, neither vendors nor Arm provides an
authoritative way to verify the integrity of the firmware. The lack
of verification could potentially introduce the risk of supply chain
poisoning, enabling an attacker to forge firmware and distribute it
through the public repository with a deceptively similar name.

9.2 Countermeasures

9.2.1 Secure FirmwareManagement. As discussed in Sec. 3,Mole is
not applicable to VM-style GPU TEEs because the firmwaremanage-
ment in such systems is handled by the trusted GPU driver bundled
within the VM. Shim-style GPU TEEs could also adopt a similar
design by relocating the firmware management to the trusted shim
layer and restricting untrusted kernel’s access to the memory re-
gion containing GPU firmware. By doing so, the adversary would

5By the time of writing, we are still responsibly discussing with MediaTek and wishing
to address it without causing any security breaches.
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no longer have access to the firmware, thereby preventing them
from tampering with it to launch Mole.
Limitation. However, moving the firmware management into the
trusted shim layer is not a trivial task. The GPU driver on Arm
contains nearly 250 KLoC [6] and the firmware-related code is scat-
tered across the driver, comprising over 60 KLoC. Separating this
code from the GPU driver is therefore a daunting task (if at all
possible). Moreover, deploying this countermeasure also faces the
problem of bloating the TCB of the GPU TEEs. Existing shim-style
GPU TEEs (e.g., CAGE) typically have a small TCB of less than
5KLoC, which is easier to audit and verify its correctness. By con-
trast, the firmware-related code in the GPU driver is significantly
larger (over 60 KLoC). Worse still, codebases of this size are more
prone to vulnerabilities. For instance 47 CVEs have been identified
in the Arm Mali GPU driver [7] between 2021 and 2024, making it
an unsuitable candidate for the TCB of GPU TEEs.

9.2.2 Firmware Verification. Since Mole operates by running a
tampered firmware on the GPU MCU, an intuitive countermeasure
is to verify the authenticity of the firmware. As shown in Fig. 16,
upstream vendors like Arm could provide a cryptographic signature
for the firmware. Then, a verifier could then be implemented to
validate the signature before loading the firmware, ensuring its
authenticity. To guarantee the security of the verification process,
the verifier should be implemented in the GPU TEE. Additionally,
the adversaries might attempt to tamper with the firmware after
the verification. To prevent such ToCToU attacks, GPU TEE must
ensure that the memory region containing the firmware is protected
from untrusted components. In this case, the firmware management
routines are included in the TCB, as the untrusted components, such
as the OS kernel, are no longer allowed to access the firmware.

Arm / Vendor Firmware
Sign with Kpriv

Verifier GPU

Verify with Kpub

GPU TEE

Figure 16: Firmware verification process.

Limitation. The main drawback of this countermeasure is similar
to that discussed in Sec. 9.2.1. To prevent ToCToU attacks, the
untrusted components such as the OS kernel must be restricted from
accessing the firmware. Consequently, the GPU TEE must assume
the responsibility for firmware management, including tasks like
reloading the firmware or updating the firmware configurations.
This approach could significantly increase the TCB size of the GPU
TEE, thereby introducing additional vulnerabilities.

9.2.3 MCU-level Isolation. Another potential countermeasure in-
volves partitioning the MCU into two isolated modes: a Non-secure
MCU (NS-MCU) for handling normal GPU tasks from untrusted
users and a Secure MCU (S-MCU) for managing secure tasks from
the GPU TEE. Similar to TrustZone, each mode has its own mem-
ory space and execution context. In this design, only the S-MCU is
permitted to access the pages allocated to the secure GPU Tasks,
and only trusted components (e.g., the GPU TEE) are allowed to
configure S-MCU. This approach extends the isolation boundary to
the MCU level, preventing MCU from compromising GPU TEE.

Limitation. To begin with, this approach requires non-trivial
hardware modifications, introducing additional costs. Furthermore,
implementing the isolation between NS-MCU and S-MCU is not
straightforward. This is because the MCU is responsible for dis-
patching the tasks among various components within the GPU (e.g.,
compute units and render units). If the MCU is partitioned into two
separated modes, the dispatching mechanismwould face challenges
in synchronizing the GPU status between the secure mode and the
non-secure mode. This could lead to performance degradation or
even introduce new security vulnerabilities.

10 Responsible Disclosure

We have reported our findings to the authors of StrongBox [25],
CAGE [63] and MyTEE [34]. They have all acknowledged the threat
posed by Mole and confirm that additional countermeasures are
necessary to defend against it [11]. We have also reported the po-
tential supply chain risks of the GPU firmware to Arm, MediaTek,
and Rockchip. Arm acknowledged the potential supply-chain con-
tamination and promised that a signature would be released for
firmware verification. MediaTek and Rockchip acknowledged that
Arm’s effort benefits users who download firmware from poten-
tially untrusted sources (e.g., GitHub).

11 Conclusion

We introduce a novel attack scheme named Mole, which under-
mines the security guarantees provided by state-of-the-art GPU
TEEs. By loading a tampered firmware into the GPU MCU, Mole
can extract sensitive data or manipulate the results of the TAs
protected by GPU TEEs. Our evaluation demonstrates that Mole
is virtually undetectable to end-users due to its minimal latency.
Finally, we reported our findings to the related parties and have
received acknowledgements from them. We hope that Mole will
raise awareness of these hiddenMCUs.We also advocate that future
TEE proposals take these components into account.
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