
Raven: A Novel Kernel Debugging Tool on RISC-V
Hongyi Lu

luhy2017@mail.sustech.edu.cn
Research Institute of Trustworthy Autonomous Systems

Department of Computer Science and Engineering
Southern University of Science and Technology

Shenzhen, Guangdong, China

Fengwei Zhang∗
zhangfw@sustech.edu.cn

Department of Computer Science and Engineering
Research Institute of Trustworthy Autonomous Systems

Southern University of Science and Technology
Shenzhen, Guangdong, China

Abstract
Debugging is an essential part of kernel development. However,
debugging features are not available on RISC-V without the use
of external hardware. In this paper, we leverage a security feature
called Physical Memory Protection (PMP) as a debugging primitive
to address this issue. Based on this debugging primitive, we design
Raven, a novel kernel debugging tool with the standard functional-
ities (breakpoints, watchpoints, stepping, introspection). A proto-
type of Raven is implemented on a SiFive Unmatched development
board. Our experiments show that Raven imposes a moderate but
acceptable overhead to the kernel. Moreover, a real-world debug-
ging scenario is set up to test its effectiveness.

Keywords
Debugger, Kernel Debugging, RISC-V
ACM Reference Format:
Hongyi Lu and Fengwei Zhang. 2022. Raven: A Novel Kernel Debugging
Tool on RISC-V. In Proceedings of the 59th ACM/IEEE Design Automation
Conference (DAC) (DAC ’22), July 10–14, 2022, San Francisco, CA, USA.ACM,
New York, NY, USA, 6 pages. https://doi.org/10.1145/3489517.3530583

1 Introduction
One essential part of kernel development is debugging, which helps
developers to track abnormal behavior and build a more robust
kernel. Unlike in the user space, where we have support from the
kernel, debugging in the kernel space has to rely on special tools.

Existing kernel-debugging tools generally fall into two categories:
hardware and software debugging. A hardware approach typically
requires an additional hardware device like a JTAGprobe [6], while
a software debugger leverages on-board hardware features or a hy-
pervisor to perform debugging. However, both options suffer from
limitations on the RISC-V platform.

The hardware debugging approaches have the following limita-
tions. (i) Hardware vendors may not expose the debugging port
due to security or cost considerations. This is very common on
mass-production models. For example, the Nezha D1 [8] from All-
winner Tech [1] hides its debugging pins inside the SD card slot,
which has to be connected through a special adapter. (ii) Current
∗Fengwei Zhang is the corresponding author

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of thisworkmust be honored.
For all other uses, contact the owner/author(s).
DAC ’22, July 10–14, 2022, San Francisco, CA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9142-9/22/07.
https://doi.org/10.1145/3489517.3530583

hardware debuggers for RISC-V typically require complicated con-
figurations. Take the HiFive Unmatched [4] from SiFive [15] for
instance; its heterogeneous architecture requires complicated con-
figuring for its debugger to work. (iii)The debugging specifications
of RISC-V remain a working draft [12], resulting in divergent im-
plementations by different vendors [1, 9, 15]. For instance, to de-
bug on the Nezha D1 [8], one has to use its customized debugger,
CKLink [2], which is tied to this specific series of processors.

Meanwhile, existing software kernel debugging approaches can
be further categorized into two types, hypervisor-based debugging
and built-in debugging. A hypervisor-based debugger runs the ker-
nel inside a virtual environment like QEMU [17].This approach iso-
lates the kernel from the actual hardware, making it hard to debug
hardware related components in kernel. A built-in debugger like
kGDB [7] or WinDBG [16] normally relies on kernel modules to
provide debugging functionality. This leads to the following lim-
itations. (i) They are OS-specific, since these kernel modules are
tied to a specific OS and impractical to port. (ii) They use software
breakpoints, which replace certain instructions inside the kernel.
This breaks the integrity of the kernel and leads to a failure of
the integrity check. Since hardware breakpoints are not available
on RISC-V without an external device, the software breakpoint
is the only option for these debuggers. There are bare-metal ker-
nel debugging tools on other platforms like x86 and ARM [23, 27]
that overcome the above limitations by leveraging hardware fea-
tures such as the Performance Monitoring Unit (PMU) [10] and
Embedded TraceMacrocell (ETM) [3]. However, these features have
not yet been fully implemented on the RISC-V platform.

In this paper, we propose a debugging design called Raven that
addresses the above issues by utilizing an off-the-shelf hardware
feature called Physical Memory Protection (PMP) on RISC-V. PMP
can divide physical memory into different permission regions with
a granularity of up to 4 bytes. Raven is able to use this feature as
a debugging primitive. For example, when a breakpoint is needed,
Raven canmask the instruction at the breakpoint as non-executable.
Thenwhen the processor tries to execute this instruction, PMP gen-
erates an exception to trap intoRaven to perform further introspec-
tion. Note that since PMP is a hardware feature, it does not alter
any content in the kernel. Thus, Raven does not break the integrity
of the kernel itself.

To test the feasibility of our design, we implement a prototype
of Raven with the official firmware OpenSBI [14] and test it on
a QEMU virtual machine and a SiFive Unmatched board. We also
implement a set of GDB-like debugging commands such as break-
points, watchpoints, andmemory introspection in theRaven proto-
type. This set of basic commands not only provides a user-friendly

https://doi.org/10.1145/3489517.3530583
https://doi.org/10.1145/3489517.3530583


DAC ’22, July 10–14, 2022, San Francisco, CA, USA Lu and Zhang.

debugging interface for Raven but also enables it to be easily incor-
porated with other debugging tools like IDA [5] and Radare2 [11].
Moreover, we successfully implement Raven with both fine- and
coarse-granularity PMP to achieve high portability across differ-
ent RISC-V boards.
Our contribution is summarized as follows.
• We propose a novel approach called Raven that leverages a hard-

ware feature of RISC-V to perform kernel debugging. To the
best of our knowledge, Raven is the first work on RISC-V that
achieves non-invasive kernel debugging without using external
hardware.

• We implemented a prototype of Ravenwithin the official firmware
OpenSBI [14] of RISC-V, which can be directly deployed on any
off-the-shelf RISC-V devices to start kernel debugging.

• We tested the prototype of Raven to show that it has the de-
bugging functionalities largely equivalent to that of an external
debugger.
The rest of this paper is organized as follows. Section 2 provides

relevant background for Raven and debugging. Section 3 focuses
on the overall design of Raven. Section 4 discusses the implemen-
tation of Raven in detail. Section 5 evaluates the effectiveness and
performance of Raven. Section 6 discusses the compatibility and
limitations of Raven. Section 7 concludes this paper and discusses
future work.

2 Background and Related Work
In this section, we introduce the relevant background and existing
work about debugging tools on the RISC-V platform.

2.1 RISC-V Architecture
2.1.1 RISC-V Privilege Levels The current RISC-V standard speci-
fies three different privilege levels, UserMode (U-Mode), Supervisor
Mode (S-Mode) andMachine Mode (M-Mode) [13]. Each has differ-
ent permissions for operations such as configuring registers, ma-
nipulating memory, and handling traps. As illustrated in Figure 1,
user applications run in U-Mode with the least privilege, whilst
the OS kernel resides in the S-Mode, which is privileged to per-
form operations such as virtual memory mapping. Raven runs in
the firmware inside theM-Mode with the highest privileges so that
it performs PMP configuration and introspection into the kernel.

Figure 1: RISC-V Privilege Levels

2.1.2 RISC-V Physical Memory Protection RISC-V provides PMP
to control access to certain memory regions [13]. More specifi-
cally, each PMP entry consists of two registers, an address reg-
ister (pmpaddr) and a configuration register (pmpcfg). A combi-
nation of access permissions (R/W/X) and an address region can
be assigned to an entry through these registers, so the entry con-
strains access to its region accordingly. The number and granular-
ity of these PMP entries are implementation dependent. For exam-
ple, the Nezha D1 [8] only provides 8 PMP entries with a coarse

granularity of 4KB, while the QEMU emulator equips 16 entries
and a fine granularity of 4 bytes. Apart from that, RISC-V defines
a set of registers to provide relevant information about exceptions.
Table 1 illustrates the content of these registers when a PMP ex-
ception occurs.

Table 1: RISC-V Exception Registers
Register Information
mepc Program counter before the exception
mcause Cause of the exception
mtval Protected address

2.1.3 RISC-V Instruction Format The base RISC-V Instruction Set
Architecture (ISA) only consists of fixed-length 32-bit instructions,
which are naturally aligned on 4-byte boundaries [13]. This coin-
cides with the granularity of PMP provided by RISC-V. However,
in order to reduce the size of the program on the RISC-V platform,
the standard defines a “C” standard extension to add support for 16-
bit instructions on RISC-V. These two types of instructions can be
distinguished by their lowest two bits. All the 32-bit instructions
of base ISA end with 11, while the compressed 16-bit instructions
end with 00, 01 or 10.

2.1.4 RISC-V Debugging Support RISC-V defines a special privi-
lege level called Debug Mode [12]. It provides various debugging
functionalities such as hardware breakpoints, program buffers, and
single stepping. However, this mode is only available with an exter-
nal hardware debugger connected. Neither firmware nor the oper-
ating system has access to these features. Thus, we still categorize
this debugging support as external debugging.

2.2 Related Work
2.2.1 PMP-assisted Systems Current research leveraging PMP fo-
cuses on its security features. For example, Penglai [20] and Key-
stone [22] use PMP to provide a Trusted Execution Environment
(TEE) for sensitive applications. LIRA-V [24] utilizes PMP to estab-
lish trusted communication channels and perform mutual attesta-
tion between two devices. Moreover, PMP can also be used to force
runtime pointer checks to detect vulnerabilities such as heap over-
flow and use-after-free [18]. Raven differs from the previous work
because it uses PMP for debugging.

2.2.2 Debugging Systems There are a variety of well-known de-
bugging tools running within the operating system. For instance,
IDA Pro [5] and Radare2 [11] are both powerful tools for debug-
ging user applications. Since they rely on the operating system to
provide their runtime environment, they cannot be used to debug
kernels without combining a hypervisor like QEMU [17].

BesidesQEMU, there are also other hypervisor-based approaches
for debugging. For example, V2E leverages hardware virtualization
and software emulation to perform malware analysis [26] while
Ether only uses hardware virtualization to achieve high transparency
for malware analysis [19]. Although it is possible to use these sys-
tems to perform kernel debugging, they still focus onmalware anal-
ysis. Further, they both rely on hardware virtualization, which is
not fully implemented on RISC-V.

Many operating systems also offer a built-in kernel debugging
mechanism, such as kGDB [7] andWinDBG [16]. Like Raven, they



Raven: A Novel Kernel Debugging Tool on RISC-V DAC ’22, July 10–14, 2022, San Francisco, CA, USA

use a debug client connect to the target machine through serial or
network to perform debugging. However, both kGDB andWinDBG
require kernel modules residing in the operating system. This ties
them to a specific OS and makes them hard to port. Further, the
trusted codebase of these OS-specific debuggers is the entire ker-
nel, making them unable to debug kernel-level rootkits, since these
rootkits are capable of tampering with the behavior of these debug-
gers.

There are also debugging systems that leverage hardware fea-
tures. MalT [27] uses the SystemManagement Mode to implement
debugging functionalities on x86 platforms, while Ninja [23] lever-
ages the PMU and ETM features on Arm. Neither of them relies on
theOS and both successfully achieve non-invasive debuggingwith-
out external hardware. However, these hardware features they rely
on are either not available or not fully implemented on RISC-V.

Additionally, Jang and Kang [21] leverage Arm debugging fea-
tures as security primitives to enforce kernel integrity, which is
opposite to what Raven is trying to do.

3 Design of Raven
3.1 Overview
We first introduce an overview of Raven. As Figure 2 illustrates,
Raven receives debugging commands from the debug client via se-
rial or network, sets PMP registers or performs introspection ac-
cordingly, and sends results back to the client. Raven is a piece
of software inside M-Mode, and we categorize it as a software de-
bugger. Hence, we focus on addressing the limitation of current
software kernel debuggers on RISC-V.

Figure 2: Overview of Raven

3.2 Design Goals and Challenges
As our goal is to overcome the limitations mentioned in Section 1
and Section 2, we need to fulfill the following properties besides
the basic functionalities of a debugger.
P1: Non-invasive Debugging. As mentioned in Section 2, the
hardware breakpoints on RISC-V are only available when an ex-
ternal debugger is connected. This causes the software debuggers
on RISC-V to use software breakpoints, which replace instructions
inside the kernel and breaks its integrity. Raven solves this issue
by utilizing PMP as a debugging primitive to implement various
debugging functionalities.
P2: NoHypervisor.Hypervisor-based kernel debugging typically
runs the kernel in a virtualized environment such as QEMU. Inside
a virtualized environment, the kernel may act differently, increas-
ing the difficulty of debugging. We solved this issue by designing

Raven as a bare-metal debugger inside the firmware, which does
not rely on any hypervisor.
P3: Operating System Agnostic. Existing built-in kernel debug-
gers like kGDB and WinDBG are generally OS-specific. However,
Raven is built along side the firmware instead of the kernel. Thus,
it is OS-agnostic and can be used to debug different kernels.

To achieve these three properties, the following challenges have
to be resolved. (i) How can PMP be utilized as a debugging fea-
ture (§3.3)? (ii) How can it be extended into various debugging
functionalities (§3.4)? (iii) How to resolve the issues brought by
the granularity of PMP (§3.5)? (iv) As its name suggests, PMP only
recognizes the physical memory address; how to synchronize be-
tween physical and virtual addresses (§3.6)?

3.3 Utilization of PMP
In this part we introduce how we solve the first challenge, us-
ing PMP as hardware primitives to facilitate debugging. We utilize
PMP as two different primitives, breakpoints and watchpoints. As
Figure 3 shows, to set a breakpoint, Raven uses PMP to mask the
corresponding instruction as non-executable and halts the kernel
when this instruction is executed. In a similar approach, both read-
only and write-only watchpoints can be set with their respective
permissions.

Figure 3: PMP as Debugging Primitives

However, since PMP is implementation specific, some boards
may equip with PMP of only 4 kilobyte granularity, which is im-
practical to set up breakpoints with coarse-granularity PMP. To
address this issue while keeping Raven non-invasive, we propose
a more compatible utilization of PMP that only requires 4 kilobyte
granularity. As Figure 4 shows, instead of setting breakpoints di-
rectlywith PMP,we use PMP to protect the regionwhere the break-
points reside and emulate the result.This achieves breakpoint func-
tionality while maintaining the non-invasive property of Raven.

Figure 4: Breakpoints with Coarse-granularity PMP



DAC ’22, July 10–14, 2022, San Francisco, CA, USA Lu and Zhang.

3.4 Extension of Functionality
With these two primitives available, now we introduce how to
achieve stepping in Raven, which is another key functionality for a
debugger. One natural intuition is to update the breakpoint as the
kernel runs. Raven also follows this method with control transfer-
ring instructions processed separately. As Figure 5 shows, if the
current instruction is not a control transfer instruction, Raven sets
the breakpoint at the next instruction; otherwise, Raven dissects
the control transfer instruction to predict its destination and sets
the breakpoint correspondingly.

Figure 5: Control Transfer Process

3.5 Solution of Granularity Issues
Since the granularity of PMP is at most 4 byte, the standard speci-
fies that its address must also be 4-byte aligned. However, the stan-
dard defines a set of compressed 2-byte instructions. This differ-
ence of alignment brings the “hidden instruction” issue for Raven.
As shown in Figure 6, during a stepping process, the PMP is always
4-byte aligned as the kernel runs. This causes a misalignment be-
tween PMP and the current pc. If the misalignment happens at a
control transfer instruction like c.jr a0 in this figure. Raven will
lose the track of current pc and cease stepping.

Figure 6: Hidden Instruction Issue
Raven overcomes this issue by using a look-ahead technique.

As Figure 7 demonstrates, if Raven detects the program counter is
not aligned up to 4-byte boundary, then this indicates a possible
“hidden instruction”. Thus, when stepping, besides the current in-
struction, Raven also look one instruction ahead. If either of them
is a control transfer instruction, Raven will dissect it and set PMP
at its destination.

3.6 Synchronization of Physical and Virtual
Addresses

Since PMP only recognizes physical addresses, it is necessary to
synchronize the memory mapping of breakpoints between kernel
and Raven. To address this issue, we leverage a hardware feature of

Figure 7: Look-ahead Technique

RISC-V called Trap Virtual Memory (TVM) [13]. When the kernel
tries to modify the page table root or flush the Translation Looka-
side Buffer (TLB), an exception is generated if TVM is enabled, and
Raven can update its PMP according to the new page table.

4 Implementation
We implemented a prototype of Raven on a QEMU virtual machine
and a SiFive Unmatched Development board [4] to evaluate our de-
sign. This prototype is based on an off-the-shelf firmware of RISC-
V called OpenSBI [14]. By default, Raven performs the following
steps to start debugging. (i) Raven sets up TVM to intercept page
table modification. (ii) An initial breakpoint is set at 0x80202000,
the starting address of Linux. (iii) Raven starts boot up process and
halts the kernel at the initial breakpoint. (iv) Raven waits for de-
bugging commands. The list of supported debugging commands
are described in Table 2. With these commands, Raven is able to
perform most debugging functionalities.

Table 2: Debugging Commands Supported by Raven
Command Format Description
b <address> Set a breakpoint at <address>
w <address> Set a watch point at <address>
pr (pw) <address> Read(Write) memory content at <address>
rr (rw) <reg> Read(Write) register content of <reg>
map <address> View the memory mapping of <address>
csrr (csrw) <csr> Read(Write) control status register of <csr>
s Single-step execution
c Continue execution after a breakpoint
<GPIO Switch> Send an external interrupt to halt the kernel

5 Evaluation
In this section, we evaluate the effectiveness and performance of
Raven as follows. §5.1 evaluates the codebase size of Raven. §5.2
provides a case study where Raven is used to locate and fix a real-
world bug. §5.3 uses LMBench to evaluate its overall overhead. §5.4
further investigates its synchronization overhead.

5.1 Codebase Size
Table 3 shows the Line of Code (LoC) of each component of Raven.
In total, we add 568 lines of C code into the OpenSBI [14] firmware.
The codebase of Raven is small compared to the firmware, which
consists of about 16, 000 LoCs. This shows that Raven can be easily
modified and ported to fit other use cases.



Raven: A Novel Kernel Debugging Tool on RISC-V DAC ’22, July 10–14, 2022, San Francisco, CA, USA

Table 3: LoC of Raven Components

Components Lines of Code

Initialization 65
Breakpoints 150
Stepping 242
Serial 111
Total 568

5.2 Case Study: A Buggy Device Tree
5.2.1 Real-world Debugging Scenario Device trees are used by Linux
to pass hardware information from an early bootloader to the ker-
nel. If an incorrect device tree is used, the kernel will not be able
to recognize its hardware, resulting in a kernel crash. To test the
effectiveness of Raven, we set up a real-world debugging scenario
where we reproduced a similar bug and located it via Raven by
the following steps. (i) Modifying the address of the interrupt con-
troller to craft a buggy device tree. (ii) Booting Linux up with this
device tree to cause a kernel crash. (iii) Using Raven to locate and
fix this bug.

5.2.2 Debugging with Raven As this bug occurs in the early boot-
ing stage, the kernel does not give any output or respond to any
input. This makes this bug very hard to locate without an external
debugger. However, with Raven, we can do the following to locate
this bug. To start with, we use the GPIO switch to send an exter-
nal interrupt to halt the kernel. By observing the sepc register, we
notice that the kernel is stuck at its exception handler. Then we
set up a breakpoint at this exception handler (handle_exception)
to see what causes the kernel to crash. After the breakpoint is
triggered, we find that this unhandled exception is caused by a
load fault (scause=5) during the initialization of the interrupt con-
troller (irq-sifive-plic.c).Thus, we successfully locate this bug
via Raven. By introspecting this initialization process with Raven,
the incorrect address (0xa002080) can be easily identified and fixed.
This debugging process is demonstrated in Figure 8.

Figure 8: Debugging with Raven

5.3 LMbench
To study the overhead imposed by Raven, we ran LMbench [25]
with Raven and compared it to vanilla Linux. To simulate a real
workload, Ravenwas configured to synchronize memory mapping
change with one dummy breakpoint that does not halt the kernel.

5.3.1 Context Switch Performance Figure 9 shows the context switch
latency of the kernel with Raven under different process numbers
and sizes; the maximum overhead of Raven is about 5𝜇s. We be-
lieve themain slowdown is caused by the synchronization between

the physical and virtual addresses which occurs when the kernel
performs a context switch and updates the page table.

Figure 9: Context Switch Performance

5.3.2 File Operation Performance Figure 10 demonstrates the per-
formance overhead of Raven during file operations. During cre-
ation and deletion of files, Raven only imposes a negligible over-
head. However, Raven slows down file reading by about 43%. We
believe the reason is that the kernel updates its page table fre-
quently when reading a file via mmap. This kind of overhead can be
reduced by temporarily disable the synchronization mechanism of
Raven if the breakpoints or watchpoints are not set in the memory-
mapped area.

Figure 10: File Operation Performance

5.4 Synchronization Overhead
To further investigate the slowdown caused by Raven, we chose
a typical sample of the Linux kernel—its booting process. It is the
initialization process of the kernel, which involves numerous page
table updates, making it a good sample for evaluating the perfor-
mance impact of the synchronization between virtual and physical
addresses.

Table 4: Booting Process Performance
Metrics (Avg.) Without Raven With Raven
Boot Time 4.713s 4.719s
Page Table Update \ ~11000
Time per Updates \ ~0.6𝜇𝑠



DAC ’22, July 10–14, 2022, San Francisco, CA, USA Lu and Zhang.

From Table 4, we can see that the kernel performs about 11, 000
page table updates during booting, and each update takes about
0.6𝜇𝑠 to complete. In contrast to the performance test of LMbench,
the overhead of the booting process caused by Raven is only about
0.1%. This is probably because the booting process itself takes a
long time to complete, thus leading to a lower overhead.

6 Discussion
6.1 Compatibility
In our approach, the number of PMP entries is essential to the func-
tionality of Raven. In both modes of Raven, the total number of
breakpoints and watchpoints is bounded by the number of PMP
entries. As shown in Table 5, most modern RISC-V boards support
at least 8 PMP entries with 4 KB granularity, which meets the re-
quirement for the more compatible implementation of Raven.

Table 5: PMP Support on RISC-V Boards
RISC-V Board # PMP PMP Granularity
QEMU Virtboard [17] 16 4 byte
HiFive Unleashed [15] 8 4 byte
HiFive Unmatched 8 4 kilobyte
HiFive Rev B 8 4 byte
Allwinner Nezha D1 [8] 8 4 kilobyte

6.2 Limitations
Since PMP is not designed for debugging, it brings the following
limitations for Raven. (i) Raven cannot achieve instruction-level
single stepping since there exist 2-byte instructions in the “C” ex-
tension of RISC-V standard and, PMP only has up to 4-byte granu-
larity. Though this can be addressed by disabling this extension or
using software breakpoints with PMP as mentioned in Section 3,
this still weakens the overall functionality of Raven. (ii) As men-
tioned in Section 3, with only coarse-granularity PMP available,
Raven still needs to use software breakpoints to replace instruc-
tions in the kernel. Although these breakpoints are protected by
PMP, this still has a noticeable effect on the system, weakening
the non-invasive property of Raven.

7 Conclusion & Future Work
We utilize the physical memory protection facilities to implement
Raven, a software kernel debugger that fulfills three key properties.
(i) Raven is non-invasive: it does not break the overall integrity of
the kernel. (ii) Raven directly resides in the firmware and does not
require any hypervisor. (iii) Raven is OS-agnostic and can be used
with different kernels.

As for future work, we plan to integrate Raven with a standard
GDB debugging protocol, which will allow Raven to communicate
with GDB clients and improve its debugging efficiency. Apart from
that, after this paper is accepted, we plan to open source our work
to the community to facilitate kernel debugging.

Acknowledgments
Theauthorswould like to thankDr. Adrian Rowland andDr. Zhengyu
Ning for proofreading and giving out their valuable suggestions
to this paper. This work is supported by the National Natural Sci-
ence Foundation of China under Grant No.: 62002151, and Science,

Technology and Innovation Commission of Shenzhen Municipal-
ity under Grant No.: SGDX20201103095408029.

References
[1] 2021. Allwinner Official Website. https://www.allwinnertech.com/
[2] 2021. CKLink Debugger Manual.
[3] 2021. Embedded Trace Macrocell Architecture Specification. https:

//developer.arm.com/documentation/ihi0014/q/Introduction/About-Embedded-
Trace-Macrocells

[4] 2021. HiFive Unmatched - SiFive. https://www.sifive.com/boards/hifive-
unmatched

[5] 2021. IDA Pro – Hex Rays Official Website. https://hex-rays.com/ida-pro/
[6] 2021. JTAG Official Website. https://www.jtag.com/
[7] 2021. KGDB Wiki. https://kgdb.wiki.kernel.org/index.php/Main_Page
[8] 2021. Nezha D1 Development Board. https://d1.docs.aw-ol.com/en/d1_dev/
[9] 2021. Nucleisys Official Website. https://www.nucleisys.com/

[10] 2021. PerformanceMonitor Unit Technical ReferenceManual. https://developer.
arm.com/documentation/ddi0433/c/performance-monitoring-unit

[11] 2021. Radare Official Website. https://rada.re/n/
[12] 2021. RISC-V Debug Specification. https://github.com/riscv/riscv-debug-spec

original-date: 2017-01-20T20:58:54Z.
[13] 2021. RISC-V Instruction Set Manual. https://github.com/riscv/riscv-isa-

manual original-date: 2017-02-02T03:24:54Z.
[14] 2021. RISC-V Open Source Supervisor Binary Interface (OpenSBI). https://

github.com/riscv-software-src/opensbi original-date: 2018-11-06T00:50:48Z.
[15] 2021. SiFive Official Website. https://www.sifive.com/
[16] 2021. WinDbg Official Website. http://www.windbg.org/
[17] Fabrice Bellard. 2005. QEMU, a Fast and Portable Dynamic Translator. In Proceed-

ings of the Annual Conference on USENIX Annual Technical Conference (Anaheim,
CA) (ATC ’05). USENIX Association, USA, 41.

[18] Asmit De and Swaroop Ghosh. 2021. HeapSafe: Securing Unprotected Heaps in
RISC-V. CoRR abs/2105.08712 (2021). arXiv:2105.08712 https://arxiv.org/abs/
2105.08712

[19] Artem Dinaburg, Paul Royal, Monirul I. Sharif, andWenke Lee. 2008. Ether: mal-
ware analysis via hardware virtualization extensions. In Proceedings of the 2008
ACM Conference on Computer and Communications Security, CCS 2008, Alexan-
dria, Virginia, USA, October 27-31, 2008, Peng Ning, Paul F. Syverson, and Somesh
Jha (Eds.). ACM, 51–62. https://doi.org/10.1145/1455770.1455779

[20] Erhu Feng, Xu Lu, Dong Du, Bicheng Yang, Xueqiang Jiang, Yubin Xia, Binyu
Zang, and Haibo Chen. 2021. Scalable Memory Protection in the PENGLAI En-
clave. In 15th USENIX Symposium on Operating Systems Design and Implementa-
tion, OSDI 2021, July 14-16, 2021, Angela Demke Brown and Jay R. Lorch (Eds.).
USENIX Association, 275–294. https://www.usenix.org/conference/osdi21/
presentation/feng

[21] Jinsoo Jang and Brent ByungHoon Kang. 2019. Revisiting the ARM Debug Fa-
cility for OS Kernel Security. In Proceedings of the 56th Annual Design Automa-
tion Conference 2019, DAC 2019, Las Vegas, NV, USA, June 02-06, 2019. ACM, 110.
https://doi.org/10.1145/3316781.3317897

[22] Dayeol Lee, David Kohlbrenner, Shweta Shinde, Krste Asanovic, and Dawn Song.
2020. Keystone: an open framework for architecting trusted execution envi-
ronments. In EuroSys ’20: Fifteenth EuroSys Conference 2020, Heraklion, Greece,
April 27-30, 2020, Angelos Bilas, Kostas Magoutis, Evangelos P. Markatos, Dejan
Kostic, and Margo I. Seltzer (Eds.). ACM, 38:1–38:16. https://doi.org/10.1145/
3342195.3387532

[23] Zhenyu Ning and Fengwei Zhang. 2017. Ninja: Towards Transparent Tracing
and Debugging on ARM. In 26th USENIX Security Symposium (USENIX Secu-
rity 17). USENIX Association, Vancouver, BC, 33–49. https://www.usenix.org/
conference/usenixsecurity17/technical-sessions/presentation/ning

[24] Carlton Shepherd, Konstantinos Markantonakis, and Georges-Axel Jaloyan.
2021. LIRA-V: Lightweight Remote Attestation for Constrained RISC-V De-
vices. In IEEE Security and Privacy Workshops, SP Workshops 2021, San Francisco,
CA, USA, May 27, 2021. IEEE, 221–227. https://doi.org/10.1109/SPW53761.2021.
00036

[25] Carl Staelin. 2005. lmbench: an extensible micro-benchmark suite. Softw. Pract.
Exp. 35, 11 (2005), 1079–1105. https://doi.org/10.1002/spe.665

[26] Lok-Kwong Yan, Manjukumar Jayachandra, Mu Zhang, and Heng Yin. 2012.
V2E: Combining Hardware Virtualization and Softwareemulation for Trans-
parent and Extensible Malware Analysis. In Proceedings of the 8th ACM SIG-
PLAN/SIGOPS Conference on Virtual Execution Environments (London, England,
UK) (VEE ’12). Association for Computing Machinery, New York, NY, USA, 227–
238. https://doi.org/10.1145/2151024.2151053

[27] Fengwei Zhang, Kevin Leach, Angelos Stavrou, Haining Wang, and Kun Sun.
2015. Using Hardware Features for Increased Debugging Transparency. In 2015
IEEE Symposium on Security and Privacy. 55–69. https://doi.org/10.1109/SP.2015.
11

https://www.allwinnertech.com/
https://developer.arm.com/documentation/ihi0014/q/Introduction/About-Embedded-Trace-Macrocells
https://developer.arm.com/documentation/ihi0014/q/Introduction/About-Embedded-Trace-Macrocells
https://developer.arm.com/documentation/ihi0014/q/Introduction/About-Embedded-Trace-Macrocells
https://www.sifive.com/boards/hifive-unmatched
https://www.sifive.com/boards/hifive-unmatched
https://hex-rays.com/ida-pro/
https://www.jtag.com/
https://kgdb.wiki.kernel.org/index.php/Main_Page
https://d1.docs.aw-ol.com/en/d1_dev/
https://www.nucleisys.com/
https://developer.arm.com/documentation/ddi0433/c/performance-monitoring-unit
https://developer.arm.com/documentation/ddi0433/c/performance-monitoring-unit
https://rada.re/n/
https://github.com/riscv/riscv-debug-spec
https://github.com/riscv/riscv-isa-manual
https://github.com/riscv/riscv-isa-manual
https://github.com/riscv-software-src/opensbi
https://github.com/riscv-software-src/opensbi
https://www.sifive.com/
http://www.windbg.org/
https://arxiv.org/abs/2105.08712
https://arxiv.org/abs/2105.08712
https://arxiv.org/abs/2105.08712
https://doi.org/10.1145/1455770.1455779
https://www.usenix.org/conference/osdi21/presentation/feng
https://www.usenix.org/conference/osdi21/presentation/feng
https://doi.org/10.1145/3316781.3317897
https://doi.org/10.1145/3342195.3387532
https://doi.org/10.1145/3342195.3387532
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/ning
https://www.usenix.org/conference/usenixsecurity17/technical-sessions/presentation/ning
https://doi.org/10.1109/SPW53761.2021.00036
https://doi.org/10.1109/SPW53761.2021.00036
https://doi.org/10.1002/spe.665
https://doi.org/10.1145/2151024.2151053
https://doi.org/10.1109/SP.2015.11
https://doi.org/10.1109/SP.2015.11

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 RISC-V Architecture
	2.2 Related Work

	3 Design of Raven
	3.1 Overview
	3.2 Design Goals and Challenges
	3.3 Utilization of PMP
	3.4 Extension of Functionality
	3.5 Solution of Granularity Issues
	3.6 Synchronization of Physical and Virtual Addresses

	4 Implementation
	5 Evaluation
	5.1 Codebase Size
	5.2 Case Study: A Buggy Device Tree
	5.3 LMbench
	5.4 Synchronization Overhead

	6 Discussion
	6.1 Compatibility
	6.2 Limitations

	7 Conclusion & Future Work
	Acknowledgments
	References

